Peramalan Jumlah Uang Beredar di Indonesia Menggunakan Jaringan Saraf Tiruan

Main Article Content

Nailul Amani Muslimah
Dony Permana
Syafriandi
Zilrahmi

Abstract

ABSTRACT


Inflation is one of the economic problems that has a strong correlation with people's welfare, especially for people with a low income fixed income class. Inflation will have a complicated impact on people with a low economy as well as the government. The money supply is an indicator that influences the rise and fall of the inflation rate in Indonesia. Therefore, controlling the money supply needs to be done to determine strategic policies that can be implemented by the government when the money supply is outside the stability limit. This study aims to predict the money supply using Backpropagation Neural Networks. The results of the analysis show that the most optimal Backpropagation model has 12 input layer units, 6 hidden layer units and 1 output layer unit or is written as BP model(12,6,1). The MAPE value resulting from forecasting with the BP(12,6,1) model is 7.53% and an accuracy of 92.47%. The BP(!2,6,1) model is a very good model for forecasting.


Keywords— Forecasting, Money Supply, Inflation, Neural Networks.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

References dari Jurnal ada di link ini https://drive.google.com/drive/folders/12wcJ03wFZcZt0C6t4Ln6pcFkAEE3JtGB?usp=share_link
[1] A. E. Purwana, “Kesejahteraan dalam Perspektif Ekonomi Islam,” Justicia Islam., vol. 11, no. 1, pp. 21–42, 2014.
[2] M. P. Rakyat and S. Jenderal, Undang-Undang Dasar Negara Republik Indonesia Tahun 1945. Sekretariat Jenderal MRP RI, 2000.
[3] H. P. Aprileven, “Pengaruh faktor ekonomi terhadap inflasi yang dimediasi oleh jumlah uang beredar,” Econ. Dev. Anal. J., vol. 4, no. 1, pp. 32–41, 2015.
[4] H. Aprillia, “Analisis Inflasi di Sumatera Utara: Suatu Model Error Correction (ECM),” Quant. Econ. J., vol. 1, no. 2, 2011.
[5] A. Sutawijaya, “Pengaruh faktor-faktor ekonomi terhadap inflasi di Indonesia,” J. Organ. dan Manaj., vol. 8, no. 2, pp. 85–101, 2012.
[6] G. A. Utari, S. R. Cristina, and S. Pambudi, “Inflasi di Indonesia: karakteristik dan pengendaliannya,” Language (Baltim)., vol. 8, no. 64p, p. 23cm, 2016.
[7] L. Wang, Y. Zeng, and T. Chen, “Back propagation neural network with adaptive differential evolution algorithm for time series forecasting,” Expert Syst. Appl., vol. 42, no. 2, pp. 855–863, 2015.
[8] N. Kohzadi, M. S. Boyd, B. Kermanshahi, and I. Kaastra, “A comparison of artificial neural network and time series models for forecasting commodity prices,” Neurocomputing, vol. 10, no. 2, pp. 169–181, 1996.
[9] J. J. Siang, “Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan Matlab,” 2005.
[10] I. Afrianto, “Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah,” KOMPUTA J. Komput. dan Inform., vol. 1, no. 1, 2012.
[11] R. R. Amelia and F. Fitri, “Peramalan Kurs Rupiah Terhadap Dolar Amerika Menggunakan Jaringan Saraf Tiruan,” J. Math. UNP, vol. 7, no. 3, pp. 1–10, 2022.
[12] H. Elarabi and N. F. Taha, “Comparison of different methods of application of neural network on soil profile of Khartoum state,” Int. J. Sci. Technol. Soc, vol. 2, no. 3, p. 59, 2014.
[13] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction,” J. Appl. Math., vol. 2014, p. 614342, 2014, doi: 10.1155/2014/614342.
[14] L. Fausett and L. V Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall, 1994. [Online]. Available: https://books.google.co.id/books?id=ONylQgAACAAJ
[15] A. F. Achmalia, W. Walid, and S. Sugiman, “Peramalan penjualan semen menggunakan backpropagation neural network dan recurrent neural network,” UNNES J. Math., vol. 9, no. 1, pp. 6–21, 2020.
[16] M. Rabil, “Peramalan Persentase Penduduk Miskin di Provinsi Nusa Tenggara Barat dengan Metode Double Exponential Smoothing dan Double Moving Average.” Institut Teknologi Sepuluh Nopember, 2017.
[17] P.-C. Chang, Y.-W. Wang, and C.-H. Liu, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Expert Syst. Appl., vol. 32, no. 1, pp. 86–96, 2007.
[18] F. Kusumadewi, “Peramalan Harga Emas Menggunakan Feedforward Neural Network Dengan Algoritma Backpropagation,” Yogyakarta Univ. Negeri Yogyakarta, 2014.
[19] I. Sutikno et al., “Backpropagation dan Aplikasinya,” Ilmu Komput. Stud. Kasus dan Apl., pp. 135–146, 2016.
[20] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts, 2018. [Online]. Available: https://books.google.co.id/books?id=_bBhDwAAQBAJ
[21] J. M. Keller, D. Liu, and D. B. Fogel, Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems, and Evolutionary Computation. Wiley, 2016. [Online]. Available: https://books.google.co.id/books?id=XZ6tDAAAQBAJ
[22] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to time series analysis and forecasting. John Wiley & Sons, 2015.