The Klasifikasi Jenis Ikan Berbasis Jaringan Saraf Tiruan Menggunakan Algoritma Principal Component Analysis (PCA) Classification of Fish Species Based Artificial Neural Network Using Principal Component Analysis (PCA) Algorithm
Main Article Content
Abstract
Fish are cold-blooded animals that are widely used by humans. Fish are a diverse group of poikilothermic vertebrates with more than 27,000 species worldwide. A large number of fish species becomes a problem in distinguishing the types of fish. The purpose of this study was to create a fish type classification system based on the texture of artificial neural network-based fish imagery using K-Nearest Neighbors and Principal Component Analysis (PCA) algorithms. The data was taken through direct exploration and retrieved directly by researchers. The data only uses 3 types of fish as the object of further research conducted training and testing test data in the first, second, and third classes only one can not be recognized by the system, while the other data can be recognized by the percentage of success of 93% (Ninety-three percent).
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[2] F. Ismawan, “Hasil Ekstraksi Algoritma Principal Component Analysis (PCA) untuk Pengenalan Wajah dengan Bahasa Pemograman Java Eclipse IDE,” J. Sisfotek Glob., vol. 5, no. 1, 2015.
[3] P. K. Handayani, “Penerapan Principal Component Analysis untuk Peningkatan Kinerja Algoritma Decision Tree pada Iris Dataset,” Indones. J. Technol. Informatics Sci., vol. 1, no. 2, pp. 55–58, 2020.
[4] I. G. A. Widagda and H. Suyanto, “Klasifikasi Pola Berbentuk Primitif dengan Menggunakan Metode Principal Component Analysis ( PCA ) The Classification of Primitive-Shaped Patterns by Using Principal Component Analysis Method,” pp. 12–21.
[5] M. Megawati and R. M. Candra, “Diagnosa Hama Dan Penyakit Pada Tanaman Jeruk Dengan Menerapkan Jaringan Syaraf Tiruan Learning Vector Quantization (Studi Kasus: Badan Penyuluhan Pertanian Kuok),” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 59–62, 2018.
[6] I. Jamaliah, R. N. Whidhiasih, and M. Maimunah, “Identifikasi Jenis Daun Tanaman Obat Hipertensi Berdasarkan Citra Rgb Menggunakan Jaringan Syaraf Tiruan,” Penelit. Ilmu Komput. Sist. Embed. dan Log., vol. 5, no. 1, pp. 1–11, 2017.
[7] E. D. Handoyo and L. W. Susanto, “Penerapan Jaringan Syaraf Tiruan metode Propagasi Balik Dalam Pengenalan Tulisan Tangan Huruf Jepang Jenis Hiragana dan Katakana,” J. Inform., vol. 7, no. 1, pp. 39–55, 2011.
[8] C. Figri and I. Susilawati, “Identifikasi Jenis Tanaman Vinca Berdasarkan Ekstraksi Ciri Citra Bunga Dan Jaringan Syaraf Tiruan Identification Of Vinca Plant Species Based On Feature Extraction Of Flower Images And Artificial Neural Networks,” pp. 54–60, 2020.
[9] M. L. Aksani, “PERANCANGAN PROGRAM APLIKASI PENGENALAN WAJAH DENGAN MENERAPKAN METODE PRINCIPAL COMPONENT ANALYSIS DAN JARINGAN SYARAF TIRUAN,” J. Tek., vol. 6, no. 1, 2017.
[10] R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan kinerja metode naive bayes dan k-nearest neighbor untuk klasifikasi artikel berbahasa indonesia,” JTIIK (Jurnal Teknol. Inf. dan Ilmu Komputer) Vol, vol. 5, 2018.
[11] M. Lestari, “Penerapan algoritma klasifikasi Nearest Neighbor (K-NN) untuk mendeteksi penyakit jantung,” Fakt. Exacta, vol. 7, no. 4, pp. 366–371, 2015.
[12] S. D. Nugraha, R. R. M. Putri, and R. C. Wihandika, “Penerapan Fuzzy K-Nearest Neighbor (FK-NN) Dalam Menentukan Status Gizi Balita,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2017.