PERBANDINGAN KEAKURATAN ALGORITMA SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBORS DALAM KLASIFIKASI TINGKAT KUALITAS CABAI BESAR
Main Article Content
Abstract
Cabai besar memiliki nilai ekonomi yang tinggi, namun kualitasnya sangat bergantung pada pemilihan dan klasifikasi yang akurat. Penelitian ini telah berhasil mengembangkan model klasifikasi otomatis untuk mendeteksi kualitas cabai menggunakan dua metode, yaitu Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN). Hasil penelitian menunjukkan bahwa model SVM mencapai akurasi tertinggi sebesar 92% untuk masing-masing kategori cabai: "Cabai Baik", "Cabai Buruk", dan "Tidak Terdeteksi". Sementara itu, KNN juga memberikan hasil yang baik, dengan akurasi masing-masing mencapai 88% untuk kelas "Cabai Baik" dan "Tidak Terdeteksi", serta 86% untuk "Cabai Buruk". Hasil ini menegaskan efektivitas kedua model dalam mengklasifikasikan cabai berdasarkan fitur visualnya, yang dapat memberikan manfaat signifikan bagi para petani dan distributor dalam menentukan kualitas produk mereka
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[2] K. Indah, D. Astuti, S. Alamanda, N. Yudhiestira, dan S. Adam, “Perancangan sistem informasi kependudukan (Population Information System Design),” JIKTI: Jurnal Ilmiah Komputer Terapan dan Informasi, vol. 2, no. 1, pp. 14–18, 2023.
[3] U. Khairat, A. Zulkifli, dan A. Qashlim, “Sistem informasi reservasi kamar hotel berbasis website,” Journal Peqguruang: Conference Series, vol. 3, no. 1, p. 204, 2021, doi: 10.35329/jp.v3i1.2204.
[4] M. Mawar, M. Assiddiq, dan A. Qashlim, “The complaint system based on whistleblowing concept and message digest 5 cryptographic method for regency inspectorate office in Polewali Mandar,” Journal of Intelligent Computing and Health Informatics, vol. 2, no. 2, p. 49, 2022, doi: 10.26714/jichi.v2i2.8033.
[5] R. A. Permana, A. Y. Ridwan, F. Yulianti, dan P. G. A. Kusuma, “Design of food security system monitoring and risk mitigation of rice distribution in Indonesia Bureau of Logistics,” dalam Proceedings of the 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 2019, pp. 249–254, doi: 10.1109/TSSA48701.2019.8985485.
[6] A. Puspitasari, “Analisis biaya dan pendapatan usahatani cabai rawit di Kecamatan Cigalontang Kabupaten Tasikmalaya,” pp. 274–282, 2020.
[7] A. F. Sallaby dan I. Kanedi, “Perancangan sistem informasi jadwal dokter menggunakan framework CodeIgniter,” Jurnal Media Infotama, vol. 16, no. 1, pp. 48–53, 2020, doi: 10.37676/jmi.v16i1.1121.